

Faculty of Industrial Technology

Suan Sunandha Rajabhat University

Software and Systems Engineering

CPE3202

Pornpawit Boonsrimuang

- 1. Introduction of OFDM system
- 2. PAPR Problem
- 3. PAPR reduction methods
- 4. PTS-Based Radix Technique
- 5. Sprit Radix DFT
- 6. Performance Evaluations
- 7. Conclusions

Introduction of OFDM system

Advantages of OFDM

- Efficient usage of frequency bandwidth
 Easy to Use Multi-QAM
 - Robustness to the multi-path fading

Standard transmission techniques

- Terrestrial digital broadcasting
- Wireless LAN

PAPR problem in OFDM Signal

- Degradation of BER performance in non-linear channel

3

- Frequency spectrum re-growth in non-linear channel

Conventional Methods for Reducing PAPR performance

Clipping and filtering

Selective Mapping (SLM)

Partial transmit sequence (PTS)

Reduction of PAPR

- Signal is partitioned into clusters
- Each cluster is multiplied by weighting factor

Conventional PTS

Structure of Transmitter with Conventional PTS Method

Drawbacks of Conventional PTS

For achieving the better PAPR performance

- Increasing the number of clusters (V)
- The number of weighting factors (W)

Problem

Increasing the computational complexity V^W exponentially

D-PTS method Based on Radix Technique

Structure of decomposition-PTS (D-PTS) Method [4]

PTS-Based Radix Technique

Comparison between D-PTS and Conventional PTS

Computational complexity

D-PTS = Conventional PTS at the middle stages of N-point Radix IFFT

Objective of this study

- 1. Improve PAPR performance
- 2. Improve Computation Complexity

Split Radix with I-PTS method

- Each clusters is partitioned by first and second parts and employ the different weighting factor to improve PAPR
 - Used Split-Radix DIF-IFFT to reduce computation complexity

A. weighting factor

I-PTS Based Split Radix Technique

Comparison between Split Radix D-PTS and Split Radix I-PTS

Computational complexity

PAPR performance

Split Radix D-PTS < Split Radix I-PTS

Radix-2 DIF

Radix-2 DIF 16 points FFT

Number of twiddle factor = 17

Number of nontrivial multiplication = 17

Sprit Radix DFT

Sprit Radix DIF 16 points FFT

Number of twiddle factor = 18

Number of nontrivial Multiplication = 10

The Low Complexity

B. Analysis of Computational Complexity

The number of twiddle factors

$$\alpha_q^{DIF} = r^{q-1} \left(\frac{N}{r^q} - 1 \right) \left[(r-1) + (r-2) + (r-1)^2 - 1 \right]$$

Overall multiplicative complexity

$$M_{total} = \sum_{i=1}^{q} \alpha_{q} + P \sum_{i=q}^{m} \alpha_{q}$$

Simulation Parameters

Modulation	QPSK	
Demodulation	Coherent	
Allocated bandwidth	5 MHz	
Number of FFT points	256	
Number of sub-carriers	64	
Number of cluster (V)	4	
Number of discrete phase (W)	4	
Symbol duration	12.8us	
Guard interval 1.28us		

Comparison of PAPR reduction performance among conventional PTS, Radix-2 DIF PTS and Split-Radix DIF PTS

Comparison of PAPR reduction performance among conventional PTS, Split-radix DIF PTS and Split-radix DIF I-PTS

Comparison of computation complexity for difference Methods

	Computation multiplications Complexity (P=4 and N=256)					
	(m-q=6)	(m-q=5)	(m-q=4)	(m-q=3)	(m-q=2)	
Conventional OFDM	NA	NA	NA	NA	NA	
Conventional PTS	0%	0%	0%	0%	0%	
DIF-PTS [4]	24.68%	36.77%	48.48%	59.40%	68.76%	
Radix-2 DIF- IPTS	24.68%	36.77%	48.48%	59.40%	68.76%	
Split-Radix DIF-IPTS	52.99%	59.04%	67.82%	74.64%	81.08%	

21

* Split-Radix (m-q = 3, 2,1) , respectively.

Split-Radix I-PTS Method

-Used weighting factor technique for PTS method conjunction with Split Radix DIF IFFT

computer simulation results

-Better PAPR performance with keeping the same size of side information

- Lower computation complexity