Plotting Ohm's Law

If we write Ohm's Law in the manner of a straight line equation we get:

$$I = (1/R).E + 0$$
 - Ohm's Law

 \Re This shows that the slope of the line is equal to 1/R or that R = $\Delta V/\Delta I$

Series Circuits

- # A circuit is any number of components joined at terminal points. Providing at least one closed path which charge can flow through.
- # Two components are in series if they have only one point in common that is not connected to other current carrying components.
- # In a series circuit, the current is the same through each series component.

Series Resistors

To find the total resistance of N resistors in series use:

$$R_T = R_1 + R_2 + R_3 + R_N$$

Once the total resistance is known, the current is:

$$I = E/R_T$$

and the voltage across each resistor is:

$$V_1 = IR_1$$
, $V_2 = IR_2$, $V_3 = IR_3$ etc.

Find the total resistance, total current and the voltages

 V_1 , V_2 and V_3 .

Voltage Sources in Series

- **X** Voltage sources CAN be connected in series
- # Simply add the sources with the same polarity and subtract the sources with the opposite polarity.

$$\# E_T = E_1 + E_2 + E_3$$

Kirchhoff's Voltage Law (KVL)

KVL states that the sum of the potential rises and drops around a closed loop is zero.

$$\Sigma_{o}V_{rises} + \Sigma_{o}V_{drops} = 0$$
 or $\Sigma_{o}V_{rises} = \Sigma_{o}V_{drops}$

Determine the unknown voltages for these circuits using KVL.

Interchanging Components

The components of a series circuit can be interchanged without affecting the total resistance, current or power to each component.

6

Voltage Divider Rule

$$R_{T} = R_{1} + R_{2}$$

 $I = E/R_{T}$
 $I = E/R_{T}$
 $I = IR_{1} = (E/R_{T}).R_{1} = E.R_{1}/R_{T}$
 $I = IR_{2} = (E/R_{T}).R_{2} = E.R_{2}/R_{T}$
 $I = IR_{2} = (E/R_{T}).R_{2} = E.R_{2}/R_{T}$

The voltage divider rule states that the voltage across a resistor in a series circuit is equal to the value of that resistor times the total voltage across the series components divided by the total resistance of the series components.

