Plotting Ohm's Law

\& If we write Ohm's Law in the manner of a straight line equation we get:

$$
I=(1 / R) \cdot E+0-O h m ' s \text { Law }
$$

\mathscr{H}^{2} This shows that the slope of the line is equal to $1 / R$ or that $\mathrm{R}=\Delta \mathrm{V} / \Delta \mathrm{I}$

V (volts)

Series Circuits

\mathscr{A} A circuit is any number of components joined at terminal points. Providing at least one closed path which charge can flow through.
\mathscr{H}° Two components are in series if they have only one point in common that is not connected to other current carrying components.
\mathscr{H}° In a series circuit, the current is the same through each series component.

Series Resistors

\mathscr{H} To find the total resistance of N resistors in series use:

$$
R_{T}=R_{1}+R_{2}+R_{3} \ldots+R_{N}
$$

\mathscr{H} Once the total resistance is known, the current is:

$$
\mathrm{I}=\mathrm{E} / \mathrm{R}_{\mathrm{T}}
$$

\mathscr{H} and the voltage across each resistor is:

$$
\mathrm{V}_{1}=\mathrm{IR}_{1}, \mathrm{~V}_{2}=\mathrm{IR}_{2}, \mathrm{~V}_{3}=\mathrm{IR}_{3} \text { etc. }
$$

\& Find the total resistance, total current and the voltages V_{1}, V_{2} and V_{3}.

Voltage Sources in Series

\mathscr{H} Voltage sources CAN be connected in series
\& Simply add the sources with the same polarity and subtract the sources with the opposite polarity.
$\mathscr{H} \mathrm{E}_{\mathrm{T}}=\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}$

Kirchhoff's Voltage Law (KVL)

$\mathscr{H V L}$ states that the sum of the potential rises and drops around a closed loop is zero.

$$
\Sigma_{0} \mathrm{~V}_{\text {rises }}+\Sigma_{0} \mathrm{~V}_{\text {drops }}=0 \quad \text { or } \quad \Sigma_{0} \mathrm{~V}_{\text {rises }}=\Sigma_{0} \mathrm{~V}_{\text {drops }}
$$

\mathscr{H} Determine the unknown voltages for these circuits using KVL.

Interchanging Components

\mathscr{I}° The components of a series circuit can be interchanged without affecting the total resistance, current or power to each component.

Voltage Divider Rule

$\notin R_{T}=R_{1}+R_{2}$
$\mathscr{H}=E / R_{T}$
$\mathscr{H} V_{1}=I R_{1}=\left(E / R_{T}\right) \cdot R_{1}=E \cdot R_{1} / R_{T}$
$\mathscr{H} V_{2}=I R_{2}=\left(E / R_{T}\right) \cdot R_{2}=E \cdot R_{2} / R_{T}$
\& $\mathrm{V}_{\mathrm{x}}=\mathrm{R}_{\mathrm{x}} \cdot \mathrm{E} / \mathrm{R}_{\mathrm{T}}$
${ }_{H}$ The voltage divider rule states that the voltage across a resistor in a series circuit is equal to the value of that resistor times the total voltage across the series components divided by the total resistance of the series components.

