Plotting Ohm's Law

% If we write Ohm's Law in the manner of a straight line equation we get:

I = (1/R).E + 0 - Ohm's Law

H This shows that the slope of the line is equal to 1/R or that R = $\Delta V/\Delta I$

Series Circuits

- # A circuit is any number of components joined at terminal points. Providing at least one closed path which charge can flow through.
- * Two components are in series if they have only one point in common that is not connected to other current carrying components.
- In a series circuit, the current is the same through each series component.

Series Resistors

 \approx To find the total resistance of N resistors in series use:

$$R_{T} = R_{1} + R_{2} + R_{3} + R_{N}$$

Once the total resistance is known, the current is:

$$I = E/R_T$$

and the voltage across each resistor is:

$$V_1 = IR_1$$
, $V_2 = IR_2$, $V_3 = IR_3$ etc.

\mathbb{H} Find the total resistance, total current and the voltages V_1 , V_2 and V_3 .

Voltage Sources in Series

- ***** Voltage sources CAN be connected in series
- Simply add the sources with the same polarity and subtract the sources with the opposite polarity.
- $\mathbf{\overset{\mathfrak{K}}{=}} \mathbf{E}_{\mathbf{T}} = \mathbf{E}_{\mathbf{1}} + \mathbf{E}_{\mathbf{2}} + \mathbf{E}_{\mathbf{3}}$

Kirchhoff's Voltage Law (KVL)

₭VL states that the sum of the potential rises and drops around a closed loop is zero.

 $\Sigma_{o}V_{rises} + \Sigma_{o}V_{drops} = 0$ or $\Sigma_{o}V_{rises} = \Sigma_{o}V_{drops}$

Hetermine the unknown voltages for these circuits using KVL.

Interchanging Components

Herein the components of a series circuit can be interchanged without affecting the total resistance, current or power to each component.

Voltage Divider Rule

* The voltage divider rule states that the voltage across a resistor in a series circuit is equal to the value of that resistor times the total voltage across the series components divided by the total resistance of the series components.

