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Design of Cloud Based Robots using Big Data
Analytics and Neuromorphic Computing

Ashwin Satyanarayana, Janusz Kusyk, and Yu-Wen Chen
New York City College of Technology (CUNY), Computer Systems Technology

300 Jay St, Brooklyn, NY 11201, USA.

Abstract—Understanding the brain is perhaps one of the
greatest challenges facing twenty-first century science. While a
traditional computer excels in precision and unbiased logic, its
abilities to interact socially lags behind those of biological neural
systems. Recent technologies, such as neuromorphic engineering,
cloud infrastructure, and big data analytics, have emerged that
can narrow the gap between traditional robots and human
intelligence. Neuromorphic robotics mimicking brain functions
can contribute in developing intelligent machines capable of
learning and making autonomous decisions. Cloud-based robotics
take advantage of remote resources for parallel computation
and sharing large amounts of information while benefiting from
analysis of massive sensor data from robots. In this paper, we
survey recent advances in neuromorphic computing, cloud-based
robotics, and big data analytics and list the most important
challenges faced by robot architects. We also propose a novel
dual system architecture for robots where they have a brain
centered cloud with access to big data analytics.

I. INTRODUCTION

It is important to understand the human brain in order to
design a robot capable of interacting with its environment. This
task may involve combining knowledge of gene expression,
synaptic connections, and neuronal microcircuits [1]. In this
paper, we look at (i) Neuromorphic Computing (NC), (ii)
Cloud Robotics (CR), and (iii) Big Data Analytics (BDA),
which together enhance the interactive abilities of robots.

NC describes the use of very-large-scale integration systems
containing electronic analog circuits to mimic neuro-biological
architectures presented in the nervous systems [2][3][4]. It has
evolved significantly in the last couple of decades to bridge
computing with neural systems. NC is an interdisciplinary
subject that takes inspiration from biology, physics, mathemat-
ics, computer science, and electronic engineering, to design
artificial neural systems (e.g., vision systems, auditory proces-
sors, and autonomous robots) whose physical architecture and
design are based on mammalian nervous systems [5].

Cloud computing is the commodification of computing re-
sources, time, and storage by means of standardized technolo-
gies to provide elastic on-demand services. Cloud computing
has been successfully applied in the smart grid domain to
provide the energy management as a service [6]. The term
cloud-enabled robotics, or CR, refers to distributed networks
combined with service robots to enhance their capabilities [7].
In [8], the authors show that intellectual capabilities of robots
could improve significantly when using the cloud.

Currently, the amount of data generated at increasing speeds
and frequencies far exceeds the capabilities of traditional data

processing. About two zettabytes of digital data is generated
every year by physics experiments, retail transactions, security
cameras, global positioning systems, etc. [9]. BDA can use
predictive tools, machine learning, and natural language pro-
cessing to ameliorate many of the storage, retrieval, and ana-
lytic challenges. Advanced data analytics practiced in business
intelligence [10] could augment existing robotic technologies.

II. NEUROMORPHIC COMPUTING

Traditional von Neumann architectures have advantages
over the human brain in, for example, precision, indefatiga-
bility, logic, and lack of bias [11] but in the realms of pattern
recognition and power consumption, a biological system may
exceed the capabilities of any traditional computer. Neuro-
morphic engineering attempts to design brain-like computing
devices imitating biological nervous systems that combine
classic computation methods and human abilities. For exam-
ple, SpiNNaker chip models the human brain by simulating
thousands of neurons and millions of synapses [12].

A. Architectures using Neuromorphic Computing

Market size of neuromorphic computing is continuously
fueled by the increasing demand for cognitive and brain-
based computing [13]. Neuromorphic chips, with advantages
of cognitive computing, optimum memory usage, high-speed
performance, and low power consumption, are projected to
drive growth within the robotics industry as well.

Zeroth project integrates a biologically-inspired computer
chip with a traditional von Neumann architecture within var-
ious devices to provide cloud-like intelligence [3][14]. The
Zeroth processor uses electrical impulses to mimic the brain’s
behavior to let a robot learn via training and feedback rather
than by relying on hard-coded instructions. SyNAPSE demon-
strates low-power scalable neuromorphic computers matching
a mammalian brain in function, size, and power consumption.

A non-von Neumann chip, called TrueNorth, was developed
to model biological neural networks. TrueNorth comprises
over four thousand cores, utilizes billions of transistors,
and integrates one million spiking neurons with millions
of synapses [15]. TrueNorth chips are energy efficient and
highly scaleable through tiling components into a single large
system [16]. The speed and energy efficiency of TrueNorth
make it good for processing sensory data in real time.

The Brain Activity Map (BAM) project attempts to under-
stand the functions of neurons and activities of human brains



by reconstructing the full record of neural actions across neural
circuits [17][18]. The BAM roadmap includes monitoring the
neural activity of a simple species, such as a Drosophila brain
with thousands of neurons, Zebra-fish brain with a million of
neurons, and the entire neo-cortex of an awake mouse.

B. Neuromorphic based Robotics

Neuromorphic robots have computing power to simulate in
real-time up to thousands of neurons [19]. The computing
power combined with on-board sensory and motor systems
are used to implement methods for learning sensorimotor
competencies. By briefly controlling the robot manually, it can
learn what sensorimotor mapping it should carry.

Data mining tasks (e.g., clustering and classification for real-
time tracking) are used with neuromorphic vision sensors for
robotic motion tracking in [20], where the algorithm combines
clustering space-time events induced by a neuromorphic sensor
and a classification procedure. The classifier uses event rates
of clusters to determine proper class labels. The robotic motion
tracking technique creates collective intelligent multi-pedal
robots that utilize neuromorphic vision sensors.

Neuromorphic eye can be used to build a miniature
electrically-powered unmanned aerial vehicle equiped with
a motion-sensing visual system to follow terrain and avoid
obstacles [21]. It includes thrust-vectoring technology for
reactive maneuvers and a real-time flight control.

III. CLOUD-BASED ROBOTICS

In a brain centered cloud for robots, the brain of the
robot can be in the cloud with immense memory and com-
putational power instantly available to robots. For example,
RoboEarth [22] and RoboBrain [23] create interconnected
knowledge systems perceived as a shared robotic brain. Similar
to humans sharing knowledge via online platforms, RoboEarth
accomplishes the same for robots by uploading information to
a knowledge base accessible by other robots [24]. Once data
has been interpreted by a robot and uploaded to the cloud or an
internet-accessible storage, other robots can access the already
computed information to speed up its processing time [25].

The online database of the RoboEarth cloud engine, called
Rapyuta, performs heavy-weight processing in the cloud in
lieu of merely querying the database, hence freeing the robot
from performing computational tasks locally [26]. Fig. 1
outlines the Rapyuta framework with robots R1-R3 having
their own computing environments C1-C3. All computing
environments C1-C3 are tightly interconnected and are con-
nected to the RoboEarth knowledge repository allowing them
to move heavy computation into the cloud.

Rapyuta achieves its objectives via secure computing en-
vironments that are dynamically allocated and interconnected,
giving robots the ability to share aggregated information stored
in the RoboEarth knowledge repository. RoboBrain employs
a similar idea to RoboEarth and Rapyuta with a knowledge
engine for robots combining data from various sources and
representing them in a format that robots can query [23].
In RoboBrain, the knowledge representation is in the form

Fig. 1. Rapyuta: an open source cloud robotics framework (adopted from [26])

of a graph that incorporates multiple modalities and is fed
by multiple sources. The engine’s structure allows a robot to
travel through the graph to find information it needs in order
to successfully perform a novel task.

IV. BIG DATA IN ROBOTICS

Initially the term Big Data (BD) was used only to denote
volumes of large data for visualization [27]. One of the first
descriptions of BD was in terms of the three Vs with Volume
reflecting massive datasets, Velocity relating to real-time data,
and Variety indicating different sources of data [9]. More
recently, BD is treated as an information asset that demands
cost-effective innovative forms of information processing for
enhanced insight and decision making. BD analytics may
involve learning of labeled data (i.e. classification) [28] or
unlabeled data (i.e. clustering) [29]. Noise in collected data
(e.g., corrupted training data) is a common problem that can
lead to wrong classification results. New sampling methods
and noise filtering algorithms provide high quality and clean
data, also known as smart data [30].

One of the earliest control methodologies for processing
large volumes of data in robotics was Sense, Plan and Act
(SPA) cycle. Sensing in SPA represents perceiving the robot’s
environment, which involves clustering of data, while Planning
predicts the next position by classifying the data. Robot’s
actions can incorporate social interactions [31] or Artificial
Intelligence (AI) assisted movements [32]. With the current
advancement in BDA, the robots SPA steps have evolved
into the following three steps: (i) descriptive analytics to
understand why something happens, (ii) predictive analytics
to predict what could happen, and (iii) prescriptive analytics
to suggest what a robot should do in a complex environment.

Big data analytics can help robots to accelerate its self-
learning process by using machine learning and computational
simulation models in prediction while dealing with adaptive
environments. Now robots running algorithms are also capable
of learning through a feedback with or without human support
to make intelligent decisions (e.g., DeepMind algorithm [33]).
Reinforcement Learning (RL) agents interact with their envi-
ronments by sending short periodic clips of their behaviors to
a human operator to determine which paths towards a goal
are the best, and the human’s choice is used to train a reward
predictor, which in turn trains the agent [33].



V. CHALLENGES

In a modern robotics infrastructure, robots should be able
to: (i) operate in a complex adaptive environment, (ii) handle
massive amounts of variegated sensor data, and (iii) share data
analytics among themselves. Providing an interaction platform
between experts from various seemingly unrelated communi-
ties is crucial to advance research in the area of robotics. For
example, for robots to behave flexibly and efficiently, advances
in AI, sensors, and propulsion technologies are needed to
facilitate efficient and effective decision making [34].

When weighing the pros and cons of traditional and neu-
romorphic computing with regard to cloud-based robotics, a
question arises concerning the optimal application of these
technologies. Sharing information between robots has the po-
tential to accelerate their understanding of the environment and
speed up decision-making process. Thus, building a common
shared database of knowledge and experience is important.
The robot’s past observations, predictions, and results could
be conveniently stored and represented in the cloud.

Continuous influx of information from numerous robotic
sensors can generate massive amount of data to be processed.
Additionally, each of the sources may follow different internal
logic or structure to represent its data, requiring it to be
transformed for accessibility and analytics. Since BDA can
be computationally expensive for individual robots to timely
perform, a cloud environment could provide a viable support-
ing platform for making computationally expensive predic-
tions. We propose an interdisciplinary approach that combines
methodologies from NC, CR, and BDA disciplines to obtain
resilient, cost-effective and responsive robotics systems.

VI. PROPOSED INFRASTRUCTURE

We propose a dual system architecture combining unique
advantages of both neuromorphic and traditional chips on each
robot. The robots rely on the cloud computing environment
when possible. If a traditional robot is disconnected from the
cloud or a command center, its actions are hampered. Our
robots include neuromorphic chips, alongside traditional chips,
to enhance their machine learning analytics and to let them
function without ongoing network connectivity. An on-board
neuromorphic chip, with parallelization, asynchronicity, and
event-driven mechanisms [35], can enhance vision and motion
computations while providing real-time decisions, such that
the data collected from the sensors can be timely processed.
Since biological systems have energy footprints magnitudes
lower than traditional computer infrastructures, relegating
specific intelligence to a biologically-inspired neuromorphic
architecture results in more energy efficient performance.

In order to control the robot’s simple mechanical actions and
oversee cloud interactions, traditional von Neumann chips are
also used in our system, where these chips control the robot’s
actions while the neuromorphic architecture manages its local
AI. Fig. 2 outlines our robot having NC and traditional chips.

Our architecture extends into the cloud platform offering
myriad benefits in the realm of BDA and multimedia process-
ing. When possible, a robot channels information collected

Fig. 2. A structuring of a robot housing dual-architecture hardware

from all of its sensors to the cloud that can dedicate enough
resources to analyze it. The cloud platform returns precise
instructions to each robot and stores historical information
for future predictions. As shown in Fig. 3, the cloud in-
frastructure collects and stores data from all participating
robots through the application programming interface (API)
and the information lines. By facilitating the deep learning
process and performing the BDA on the cloud platform, a
global intelligence is obtained which is then distributed to all
participating robots’ APIs. The services provided by the cloud
platform are based on massive historical data impractical to
store and process by individual robots.

In order to handle rapidly and unexpectedly changing envi-
ronments, our robots use local chips and, possibly, knowledge
from other robots when the internet connection is intermittent.
When the network connectivity is adequate, the robots can rely
on cloud infrastructure for heavy and precise analytics. Robots
can share knowledge obtained by descriptive, predictive, and
prescriptive analytics with other robots directly or via the
cloud (see Fig. 3). Our model deals with massive amount
of variegated data by using data mining, sampling and noise
filtering tools for combining data from various sources to
generate smart data.

VII. CONCLUSION

This paper is an attempt to cover cloud computing, neu-
romorphic computing and big data analytics to improve the
control architecture of robotics. We outline how traditional
computers are behind biological systems in terms of pattern
recognition, analytics, and power consumption and introduce
recent advances in the field of neuromorphic engineering that
imitate the human brain by simulating neurons and synapses.
Modern robotics is an increasingly interdisciplinary field that
could use cloud and big data analytics to facilitate efficient and
effective decision making in robots. We present three main
challenges in the design of robotics infrastructure. We then
address these challenges by proposing a novel dual system
architecture (which houses both traditional and neuromorphic
chips) where robots have a brain centered cloud with access
to big data with analytics. The robots can not only learn from
one another by sharing their observation data, experience and
knowledge, but can also gain information from cloud-based
big data analytics.
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